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1. Introduction

Particle-laden two-phase flows involving non-spherical particles such as aerosols and fibers are
very common in many industrial processes. Over the past decade, the transport of non-spherical
particles in flows has received much attention. In the following, we give a brief review on the
works related to shear flows, sedimentation and turbulent flows.
1.1. Shear flow

Jeffery (1922) analyzed theoretically the motion of an ellipsoid in simple shear flow at zero
Reynolds number, and he found that the ellipsoid rotated about the vorticity-axis (perpendicular
to the flow-gradient plane) along a closed orbit, with the choice of orbit being dependent solely on
the initial condition. Bretherton (1962) extended Jeffery�s solution to all axisymmetric particles by
simply replacing the aspect ratio of particles with an effective aspect ratio. When the effect of inertia
was present, both the theory (Saffman, 1965) and the experiments (Karnis et al., 1966) revealed that
the axis of a prolate spheroid gradually turned into flow-gradient plane, whereas a oblate spheroid
eventually aligned its axis with the vorticity-axis. Recently, Ding and Aidun (2000) investigated
numerically the effect of inertia on the dynamics of an elliptical cylinder and an ellipsoid suspended
in shear flow with the Lattice–Boltzmann method. The rotational motion was confined to the flow-
gradient plane and they found that the angular velocity of the particle decreased with increasing
Reynolds number and the rotation stopped when the Reynolds number exceeded a critical value.
Zettner and Yoda (2001) studied experimentally the effects of fluids inertia, geometry and flow
confinement upon the dynamics of neutrally buoyant elliptical cylinders over a wide range of aspect
ratios in simple shear flow at moderate shear Reynolds numbers, and the results confirmed that an
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elliptical cylinder of moderate aspect ratio cease to rotate, resting at a nearly horizontal equilibrium
orientation above a critical Reynolds number. It was observed that the axis of a fiber spiraled
towards the vorticity axis in weakly elastic fluids, but the fixed orientation was along the flow
direction in highly elastic fluids (e.g., Harlen nad Koch, 1993; Iso et al., 1996).

Both the translational and the rotational motions of a spheroid moving in shear flow near a wall
were examined numerically by Gavze and Shapiro (1996, 1997, 1998) under the conditions that the
fluids inertia was negligible, the effect of the particle inertia was present, and the rotation was
confined to the flow-gradient plane. Broday et al. (1998) investigated the motion of both neutrally
and non-neutrally buoyant prolate spheroidal particles in vertical shear flows at low Reynolds
numbers by using the generalized Faxen law.Moses et al. (2001) inspected the motion of a fiber in a
shear flow near a solid boundary experimentally. For the lateral migration of axisymmetric (but
non-spherical) particles subjected to the effect of inertia, Leal (1980) concluded that they generally
show the same behavior in all shear flows as a sphere provided that the data are averaged in time to
remove any periodic lateral motion associated with the periodic rotation of the particle.

Rheology of fiber suspensions is a subject of extensive investigation, and a comprehensive
review has been given by Petrie (1999). Recently, Petrich et al. (2000) examined experimentally the
stress–microstructure relationship in semi-concentrated fiber suspensions. Raiskinmaki et al.
(2000) studied the effects of the shape and concentration of the particles on the rheological
properties of non-Brownian suspensions at non-zero Reynolds numbers with the Lattice–Boltz-
mann method.

1.2. Sedimentation

Unlike spheres, an isolated non-spherical particle falling in a fluid at zero Reynolds number can
have motion perpendicular to gravity. The velocity of a slender body depends strongly on its
orientation and can be evaluated with the slender body theory (Batchelor, 1970; Mackaplow and
Shaqfeh, 1998). When the effect of inertia is present, a long body with the broadside across the
stream is stable (e.g., Huang et al., 1994). Leal (1975) and Chiba et al. (1986) observed that a
slender cylinder falling in a viscoelastic fluid rotated into a vertical orientation as a stable con-
figuration. Liu and Joseph (1993) investigated extensively the effects of both inertia and visco-
elasticity on the orientation of a long body. Huang et al. (1998) reported the numerical results on
the sedimentation of an elliptic particle in Oldroyd-B fluids. The sedimentation of multi-cylinders
at moderate Reynolds numbers were investigated experimentally by Jayaweera and Mason (1965)
and Joseph (1993), and numerically by Qi (2001). The results showed that the wake of particles
was important to the microstructure of suspensions. Turney et al. (1995), Herzhaft et al. (1996),
Herzhaft and Guazzelli (1999), Mackaplow and Shaqfeh (1998), and Lin et al. (2002) studied the
sedimentation of fiber (or cylinder) suspensions at low Reynolds numbers.

1.3. Turbulent flow

The works on the investigation of the interactions between spherical particles and turbulent
flows showed that the distribution of particles is substantially affected by the coherent structures,
and the turbulent structures are in turn modified by the presence of the particles (e.g., Yamamoto
et al., 2001). Some works on the motion of non-spheroidic particles in wall-bounded shear flows
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have been reported (Fan and Ahmadi, 1993; Soltani et al., 1997; Soltani and Ahmadi, 2000;
Shams et al., 2001; Zhang et al., 2001), which revealed that the effect of the coherent structures on
the particle dispersion was basically the same for all particles with different shapes. Johnson and
Martonen (1993) studied the deposition of fibers in the pulmonary track of humans and animals.
Fan and Ahmadi (1995), Olson and Kerekes (1988) and Olson (2001) considered the motion of
ellipsoidal particles or fibers in homogeneous isotropic turbulent.

In turbulent shear flows, the effect of fluid inertia on the motion of particles generally exists,
therefore, in the dilute case where the interaction between the particles can be neglected, the
principal axis of an ellipsoid-like particle turns into the flow-gradient plane and the particle
mainly rotates about the vorticity-axis. Since the particle of large aspect ratio spends most of its
rotation time at the orientation of the flow direction, the particle appear to align its long axis with
the flow direction. Zhang et al. (2001) numerically examined the motion of ellipsoids in a dilute
turbulent channel flow, and it is interesting that he observed the same motion behavior of the
ellipsoids as described above, although the inertia of the fluid was neglected for computation of
the hydrodynamic drag on the particles. The reason is not clear, but it should be noted that the
turbulent shear flow is not a steady simple shear flow, but an unsteady complex flow. The presence
of extensional strain rate components in the velocity gradient could significantly affect the ori-
entation of an ellipsoid, e.g., the steady orientation of a rod is along the flow direction in an
extensional flow. In addition, the effect of the particle inertia could also qualitatively modify the
motion behavior of the particle. For example, Gavze and Shapiro (1998) observed that an el-
lipsoid near a wall in a shear flow migrated towards the wall under the conditions that the fluids
inertia was neglected and the effect of the particle inertia was considered. There should be no
migration if the particle inertia is absent. The results presented in the current study also confirm
that a fiber moving in an inhomogeneous flow turns into the flow-gradient plane and align with
the flow direction, although the computation of the hydrodynamic force on the fiber is based on
the Stokes flow theory.

The interactions between the particles would cause the dispersion of the orientation distribu-
tion, as described by the theory of fiber suspensions. Bernstein and Shapiro (1994) measured the
orientation distribution function of glass fiber cylindrical particles suspended in laminar and
turbulent shear flows, and the effect of the flow velocity gradients and the particle�s rotational
diffusivities on the orientation distribution function was examined.

As far as mixing layer flow is concerned, the experimental and computational works involving
spherical particle transport were reported in the literature (e.g., Crowe et al., 1985; Hishida et al.,
1992; Tong and Wang, 1999; Lin et al., 2000). However, the work on the transport of non-
spherical particles has not been reported yet. Fiber is one of the most common non-spherical
particles. In this paper, the spatial and orientation distributions of fibers moving in an evolving
mixing layer are investigated. The reasons for taking a mixing layer as a background flow are
listed as follows. (1) The mixing layer represents a typical shear flow and thus provides a building
block for many practical inhomogeneous flows such as wakes and jets. (2) In the engineering
applications, the particle dispersion in mixing layers is of importance, for example, a coal-fired
power plant relies on the proper dispersion of particles in the feed jets to provide a well-mixed
gas–particle flow for efficient combustion. The proper design of the flow processes depends heavily
on the understanding of the dispersion of particles. (3) The mixing layer is a typical flow which
involves the large-scale vortex structures. The traditional approach of dealing with the dispersion
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of particles is to regard the process as a Fickian diffusion process and to quantify the mass transfer
of particulates with a diffusion coefficient and a particle concentration gradient. This model may
be adequate for near-isotropic turbulent flows, however, is not suited to the anisotropic turbulent
flows such as a mixing layer.

The spatial and orientation distributions of fibers play an important role in determining the
rheological properties, thermal conductivity, absorption and reflection of light, etc. (Brenner,
1974). The Stokes number, which is used to characterize the effectiveness of large-scale structures
to move the particle laterally in a mixing layer, the fiber-to-fluid density ratio and the fiber aspect
ratio are control parameters for the motion of fibers. The current study is aimed to provide the
effects of these factors on the spatial and orientation distributions of fibers.
2. Physical model and governing equations

2.1. Mixing layer

Fig. 1 shows a schematic of the standard Newtonian fluid mixing layer consisting of two
parallel streams with different velocities U1 and U2. We take u0 ¼ ðU1 � U2Þ=2 as the free stream
velocity in a reference frame that moves at the average velocity of the flow ðU1 þ U2Þ=2 and h0 as
the momentum thickness of the mixing layer. We use 2u0 and h0 as characteristic velocity and
characteristic length to make the equations dimensionless and define the Reynolds number by
Re ¼ ðU1 � U2Þh0=m.

The governing equations in the physical space are the continuity equation and the momentum
equation:
r � u ¼ 0 ð1Þ

ou

ot
þ x� u ¼ �rP þ 1

Re
r2u ð2Þ
where x ¼ r� u is the vorticity, P ¼ p þ 1
2
juj2 is the total pressure.

We are interested in the time-developing mixing layer since it can be thought of as an ap-
proximation to spatially developing mixing layer (Rogers and Moser, 1992) and the simulation of
time-developing mixing layer allows much higher resolution of computation. For the time-
developing mixing layer, we can impose periodic boundary conditions in the streamwise direction.
y

x

1U

2U

Fig. 1. Schematics of mixing layer.
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Considering that all the perturbations vanish rapidly as y ! 1, periodic conditions can be also
imposed in the transverse direction by introducing the image flows far enough from the mixing
layer center. Thus, the standard Fourier pseudo-spectral method can be applied directly.

The initial velocity is for the time-developing mixing layer consists of the following two parts:

(1) The base flow with hyperbolic-tangent profile
U ¼ 0:5 tanhðyÞ ð3Þ

(2) The two-dimensional fundamental disturbances, the streamfunction of which is
wzðx; yÞ ¼ A1R½/1ðyÞeia1x� ð4Þ
where R denotes an operator that gets the real part for a complex. A1 is the amplitude of the
disturbance, a1 represents the wavenumber for fundamental disturbances and /1ðyÞ denotes
the normalized eigenfunction for the fundamentals, which can be approximately derived from the
inviscid linear stability theory in the case of high Reynolds numbers. The value for a1 in this study
is set to be 0.4446 which corresponds to the most unstable perturbation given by Michalke (1964).
We fix A1 ¼ 0:1 in this paper.

For convenience, we define F ¼ x� u and transform u; P ;F into the Fourier spectral space and
denote them by u�, p� and F�, respectively. Then Eqs. (1) and (2) in the spectral space with p�

eliminated read
a � u� ¼ 0 ð5Þ
d

dt

�
þ a � a

Re

�
u� ¼ aða � F�Þ

a � a � F� ð6Þ
where a ¼ ða1; a2; a3Þ ¼ ð2pk1=L1; 2pk2=L2; 2pk3=L3Þ, L1, L2, L3 are the periods in the streamwise,
transverse and spanwise directions, respectively. k1, k2, k3 are the wave numbers in three direc-
tions, respectively. Eq. (6) is solved by using the Adams-Bashforth scheme for the terms of the
right-hand side and the implicit Crank–Nicolson scheme for the terms of the left-hand side. Time
step Dt is 0.05. The numbers of the streamwise, transverse and spanwise collocation points are
taken to be 64, 128 and 32, respectively.

2.2. Motion of fibers

The fibers have a length 2l, a radius a, and density qp. The calculation of the motion of fibers is
based on the following assumptions:

(1) The fibers are non-Brownian rigid particles.
(2) The flow around each fiber is considered as the Stokes flow.
(3) The size of each fiber is much smaller than the scale of the flow field.
(4) The interactions between fibers are neglected.

Based on the assumptions above, the slender body theory (Batchelor, 1970) can be used to
represent the disturbance velocity created by a fiber as an integral of Stokeslets distributed along
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the fiber axis. Then the motion of the fibers in a particulate flow satisfies the following equation
(Mackaplow and Shaqfeh, 1998):
Uþ ðX� spÞ � u1ðxc þ spÞ ¼ �2 ln 2A

 
þ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p

bðsÞ

!
ðdþ ppÞ � fðsÞ

� ðd� 3ppÞ � fðsÞ � ðdþ ppÞ �
Z

fðsÞ � fðs0Þ
js� s0j ds0 ð7Þ
where U and X are the translational and angular velocity of fiber, p is the orientation unit vector
of a fiber, s is the distance from the center of fiber, u1 is the undisturbed fluid velocity, xc is the
fiber center position, A is fiber aspect ratio, b, a shape factor, equals unity for fiber, and fðsÞ is the
density distribution of the force along the axis of a fiber. The integral in Eq. (7) is evaluated by 11-
point Gauss-Legendre integration, and then fðsÞ is obtained by solving the resulting linear
equations. The force and torque on a fiber are
F ¼ 8pll
Z 1

�1

fðsÞds; T ¼ 8pll2
Z 1

�1

sp� f ds ð8Þ
where l is the fluid viscosity. The fiber�s motion can be obtained by solving the following
equations
mp
dup

dt
¼ F ð9aÞ

I � dX
dt

þX� I �X ¼ T ð9bÞ
where mp, up and I are fiber mass, velocity and moment of inertia, respectively. After non-
dimensionlization with the scales of flow field, Eq. (9a) takes the form as
dup

dt
¼ 1

St

Z 1

�1

fðsÞds ð10Þ
where the Stokes number is defined as St ¼ qpa
2DU=4lh0, h0 is the momentum thickness of the

mixing layer. With the slender body assumption (the fiber aspect ratio A � 1), the three com-
ponent equations of Eq. (9b) in the body coordinate system yield:
dXx

dt
¼ 3

StA
4St
Req�

� ��1
2

Tx þ XyXz ð11aÞ

dXy

dt
¼ 3

StA
4St
Req�

� ��1
2

Ty � XzXx ð11bÞ

dXz

dt
¼ 2A

St
4St
Req�

� ��1
2

Tz ð11cÞ
where q� is the fiber-to-fluid density ratio. From Eqs. (10) and (11) we find that the translational
motion of a fiber is only determined by the Stokes number, whereas, the rotation of fiber is
controlled by the fiber aspect ratio, the fiber-to-fluid density ratio and the Stokes number. The
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effect of the density ratio at fixed Reynolds number and Stokes number can reflect the effect of the
dimensionless size of the fiber, since
4St
Req� ¼

a
h0

� �2
3. Results and discussions

In the simulations, only a two-dimensional perturbation is introduced to the flow. It is obvious
that the flow will keep homogeneous along the Z-axis, which is illustrated in Fig. 2. However, the
motion of fibers is considered three-dimensional. The Reynolds number is fixed to be 400. The
effect of gravity on the motion of fiber is neglected.
3.1. Vortex roll-up

The different stages of vorticity evolution are illustrated in Fig. 3. The Kelvin–Helmholtz in-
stability leads to the roll-up of the mixing layer and the formation of a large-scale vortex. Using
topological theory, the vortex center is a center-point and the center between two consecutive
center-points is a saddle-point where vorticity is depleted. Because the inhomogeneity of the flow
is important to the orientation of the fibers, it is necessary to divide the flow fields into two parts:
inhomogeneous flow region and homogeneous flow region. For convenience, we choose the
streamlines through the two neighboring saddle-points as the demarcation lines and regard the
region encompassed by the streamlines (referred to as cat-eye zone from its shape) as the inho-
mogeneous flow region and the region outside the cat-eye zone as homogeneous flow region. It is
worth noting that this demarcation of the inhomogeneous and homogeneous flow regions by the
streamlines is not established precisely. The extensional strain region along the edge of the vortex
is not entirely confined within the cat-eye zone. Moreover, the vorticity diffusion can enhance the
area of inhomogeneous flow (see last two sub-plots in Fig. 3). Therefore, the actual inhomoge-
neous flow region is a bit larger than the cat-eye zone.
Fig. 2. Coordinate system of vortex roll-up.



Fig. 3. Vorticity distributions (contours) at different times.

Fig. 4. Evolution of energy: (a) energy in the base flow, (b) energy in the fundamental perturbation.
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Fig. 4 gives the evolution of the energy in the base flow and the fundamental perturbation.
Firstly the fundamental perturbation gets energy from the base flow and amplifies exponentially.
At T ¼ 46, the energy of the fundamental perturbation reaches its maximum, which is customarily
defined as the time of roll-up. During T ¼ 46–78, part of the energy in the fundamental returns to
the base flow. The flow then attains a quasi-steady state, which is characterized by the energy
exchange between the base flow and the fundamental perturbation.
3.2. Comparison between the computations and the experiments

In order to verify the computation, we perform the corresponding experiments to compare with
the numerical results. The experimental facility is shown in Fig. 5. The main parts of the facility
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are a reservoir, valves and test section. The size of the test section is 150 cm (length)� 12 cm
(width)� 8 cm (height). The fluid passes through a straight duct that is 50 cm long and contains
several screens, and through a 9:1 contraction duct with the length of 36 cm before reaching the
test section. In the experiment, the velocities of the main streams are controlled by the adjustors at
the input and the diffluent valves in the transmission sect. The nylon fibers with the diameter of 20
lm, the density of 1.04� 103 kg/m3 and the aspect ratio ranging from 20 to 50 are used. The fibers
are injected into the upper flow. The velocity profile near the end of the splitter plate is measured
by LDA and is shown in Fig. 6. The velocities of the upper and the lower main streams are 1.1 and
5.3 cm/s, respectively. Based on the velocity profile, the momentum thickness h0 is calculated as
0.42 cm. The Reynolds number is 175 and the Stokes number of fiber is 1.09� 10�3. The reason
that experiment was performed at only one Stokes number is that the experiment just aims to
verify the computational results, and the detailed results about the effect of Stokes number will be
given by computation in 3.3. It is much more difficult to measure the orientation of the fibers in
experiments.

The computational and experimental results for the spatial and orientation distributions of
fibers at the comparable values of parameters are presented in Fig. 7. We can see that the com-
putational results agree well with the experiments, and the motion behavior of the fibers in the
mixing layer is essentially captured by the numerical simulation.
Fig. 6. The velocity profile at the inlet.



Fig. 7. Comparison between the computation and the experiment.
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3.3. Effect of the Stokes number on the spatial and orientation distributions of fibers

For all cases in this section, the fibers have the aspect ratio 30 and the density ratio 755. The
fibers are initially distributed homogenously in the space and take isotropic orientations.

Fig. 8 shows the projection of the fibers into the MXY -plane. The Stokes number (St) represents
the ratio of the fiber response time to the characteristic time scale of flow, and in a sense, the
particle inertia. When St is small, e.g., 0.01, the fibers respond rapidly to the flow and almost
follow the motion of local fluid elements. During the vortex roll-up, the spatial distribution of
fibers keeps homogenous. When St is moderate or large, the response of fibers to the flow becomes
slow. The fibers in the vortex core region appear centrifugalized and are consequently concen-
trated at the edge of the vortex. At St ¼ 1:0, almost all the fibers in the cat-eye zone are located at
Fig. 8. Distributions of fibers at the different Stokes numbers.
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the edge of the vortex. These results are similar to those given by Crowe et al. (1985) for the case
of the spherical particles.

In order to do some quantitative analyses, we define the fibers centrifugation degree in the
MXY -plane:
DcðtÞ ¼
1

D0

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxfðtÞ � xcÞ2 þ ðyfðtÞ � ycÞ2

q
ð12Þ
where ðxf ; yfÞ is the projection of the center of a fiber into the MXY -plane, ðxc; ycÞ is the coordinate
of the vortex center and D0 ¼

PN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxfð0Þ � xcÞ2 þ ðyfð0Þ � ycÞ2

q
.

It can be found in Fig. 9 that the larger the Stokes number is, the higher the centrifugation
degree is, which is consistent with the qualitative analysis above.

Next, we investigate the behavior of fiber orientations. The distributions of angles between the
axes of fibers and the Z-axis in the cat-eye zone and outside the cat-eye zone at T ¼ 100 are shown
in Figs. 10 and 11, respectively. We can see that there is no preferable orientation for the fibers
outside the cat-eye zone and the fiber orientation keeps random, whereas in the cat-eye zone most
fibers take the angle of p=2 with respect to the Z-axis, meaning that the fibers turn into the XY -
plane. As mentioned in the Introduction section, it is interesting that the hydrodynamic force
evaluated using the Stokes flow theory can give rise to the fibers rotating in the way as if subjected
to the effect of inertia. The facts that the flow is not a steady simple shear flow here and the
particle inertia is present may be responsible for this seemingly anomalous turn of the fibers. In
addition, Figs. 10 and 11 show that the Stokes number has no significant effect on the orientation
Fig. 10. Distributions of the angles between the fiber axes and the Z-axis in the cat-eye zone at T ¼ 100.

Fig. 9. Degree of centrifugation.



Fig. 11. Distributions of the angles between the fiber axes and the Z-axis in the outside cat-eye zone at T ¼ 100.
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distribution of fibers, although the distribution near the angle of p=2 is slightly more concentrated
at larger Stokes numbers. From Fig. 8, most fibers in the inhomogeneous flow region appear to
align with the flow direction. Since the flow dynamics is dominated by the vortex, we can say that
the orientation of fibers in the XY -plane is dominated by the vortex. The Stokes number is defined
globally as St ¼ qpa

2DU=4lh0 here, DU is the velocity difference of two streams and h0 the mo-
mentum thickness of the mixing layer, so the Stoles number does not affect the orientation. If the
Stokes number is defined locally in terms of the shear rate, the conclusion may be different.

Apart from the motion in the XY -plane, the spanwise (along the Z-axis) drift of fibers is ob-
served. The maximum drift Dzmax and the average drift �DDz are defined as
DzmaxðtÞ ¼
1

L
max jZiðtÞ � Zið0Þj; i ¼ 1; . . . ;N ð13Þ

�DDzðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NL

XN
i¼1

ðZiðtÞ � Zið0ÞÞ2
vuut ð14Þ
where ZiðtÞ is the Z-component of the position of the ith fiber, N is the total number of fibers, and
L the streamwise length (period) of the flow. The reason why a fiber drifts in the spanwise di-
rection is that a Z-component force on the fiber is generated when the axis of the fiber is not
vertical or parallel to the Z-axis and the local flow is not homogeneous.

From Fig. 12, the drifts in all cases basically take place at the initial stage, and then the drift
velocities become small, which is clearly caused by the turn of the fibers into the XY -plane and,
for the case of large Stokes numbers, is partly due to the migration of fibers away from the
Fig. 12. Spanwise drifts of fibers.
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cat-eye zone. Fig. 12 shows that the duration of the initial drift is longer, and consequently the
total drift is more pronounced at a larger Stokes number. The longer initial drift at a higher
Stokes number is probably due to the higher particle inertia, in the sense that it takes a longer
time for a fiber of stronger inertia to cease its drift motion under the Stokes drag, although the
generation of the drift motion at very initial time is slightly retarded at larger Stokes numbers,
as shown in Fig. 12.

3.4. Effects of the density ratio on the spatial and orientation distributions of fibers

We investigate the effects of the density ratio on the spatial and orientation distributions of
fibers at St ¼ 0:1. The difference between the spatial and orientation distributions of fibers at two
different density ratios, case 1 and 2, can be measured by the average position difference, �DDl, and
the average angle difference, �DDh, which are defined, respectively, as
�DDl ¼
1

NL

XN
i¼1

jx1
i � x2

i j ð15Þ

�DDh ¼
1

N

XN
i¼1

arccosðjp1 � p2jÞ ð16Þ
Fig. 13. Evolution of �DDl and �DDh of fibers at different density ratios.

Fig. 14. Distributions of position differences (T ¼ 100) at different density ratios.



J. Lin et al. / International Journal of Multiphase Flow 29 (2003) 1355–1372 1369
where N is the total number of fibers, x1
i , x

2
i are the positions of the fibers with the same initial

positions for the two cases studied, respectively, and L is the streamwise length.
The evolutions of �DDl and �DDh are shown in Fig. 13. Both of them increase monotonously with

time and the density ratio difference between the two cases compared. From Figs. 14 and 15,
which show the distributions of the position differences and the orientation differences, respec-
tively, at T ¼ 100, we find that the motion of most fibers is slightly affected by the density ratio
and only some individual fibers have large position and orientation differences at the two different
density ratios. In a word, the effect of density ratio is small.
3.5. Effects of the fiber aspect ratio on the spatial and orientation distributions of fibers

We also examine the functions of the fiber aspect ratio using the above method. The results are
depicted in Figs. 16–18. The similar tendency is found: the differences increase with time and the
aspect ratio difference between the two cases. The effect of the aspect ratio on the motion of fibers
is also small, although it seems that the fiber aspect ratio has a little stronger effect than the density
ratio.
Fig. 15. Distributions of angle differences (T ¼ 100) at different density ratios.

Fig. 16. Evolution of �DDl and �DDh of fibers at different aspect ratios.



Fig. 18. Distributions of angle differences (T ¼ 100) at different aspect ratios.

Fig. 17. Distributions of position differences (T ¼ 100) at different aspect ratios.
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4. Conclusions

The effects of the Stokes number, the density ratio and the fiber aspect ratio on the spatial and
orientation distributions of fibers in an evolving mixing layer are studied numerically, and the
experiment confirms that the numerical results are reasonably correct. The following conclusions
are drawn based on the discussions above:

(1) The Stokes number is the key parameter to determine the spatial distribution of fibers. At a
small Stokes number the fibers are homogeneously distributed in the flow. When the Stokes
number increases to O(0.1), the fibers migrate away from the large-scale vortex core region
and are concentrated at the edge of the vortex.

(2) The spanwise drifts of the fibers basically take place at the initial stage. The amount of the
spanwise drifts is increased as the Stokes number increases.

(3) The effect of the Stokes number on the orientation distribution of fibers is insignificant. Most
fibers turn into the flow-gradient plane irrespective of the value of the Stokes number, and in
the flow-gradient plane the fibers tend to align with the local flow direction, which is domi-
nated by the large-scale vortex.

(4) The effects of both the density ratio and the fiber aspect ratio on the spatial and orientation
distributions are small, although it seems that the latter is a little stronger than the former.
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